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Various approaches of defining and determining work performed on a quantum system are compared. Any
operational definition of work, however, must allow for two facts: first, that work characterizes a process rather
than an instantaneous state of a system and, second, that quantum systems are sensitive to the interactions
with a measurement apparatus. We compare different measurement scenarios on the basis of the resulting
postmeasurement states and the according probabilities for finding a particular work value. In particular, we
analyze a recently proposed work meter for the case of a Gaussian pointer state and compare it with the results
obtained by two projective and, alternatively, two Gaussian measurements. In the limit of a strong effective
measurement strength the work distribution of projective two energy measurements can be recovered. In the
opposite limit the average of work becomes independent of any measurement. Yet the fluctuations about this
value diverge. The performance of the work meter is illustrated by the example of a spin in a suddenly changing
magnetic field.
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I. INTRODUCTION

Work belongs to the most basic notions of classical
mechanics and also presents one of the cornerstones of
thermodynamics. With the recent experimental progress in the
fields of cold atoms [1], nanomechanics, and optomechanics
[2,3] to name just a few, there is an urgent need of a theoretical
foundation of what work means in quantum mechanics and
how it can be defined in an operational way.

One reason why work does not simply fall into the category
of observables like position, linear and angular momentum,
and energy comes from the fact that it is meant to characterize
a process rather than an instantaneous state of a system [4].
Even in the simple case of a thermally isolated system the
determination of work requires an interference of the system
with a measurement device at two times. For a classical system,
the interaction between the system and the measurement
device can be made arbitrarily weak and, hence, the back-
action can be arbitrarily small, without implying a principle
limitation of the precision of the measurement. However, for a
quantum systems, the back-action of the measurement device
modifies the state of the system; it consequently influences
the outcome of a subsequent contact, therefore influencing the
final value of the work [5].

The paper is organized as follows. In Sec. II we survey
various definitions of work that classically are equivalent to
each other. We review in more detail the operational definition
in terms of two projective energy measurements in Sec. III. In
Sec. IV we discuss a Gaussian energy measurement scheme
which then is employed in a two Gaussian energy measurement
device. A recently proposed approach to determine work
by a single, necessarily generalized measurement [6,7] is
discussed in Sec.V for a Gaussian pointer. A work meter that
functions in that way operates with a precision determined
by a parameter combining the strength of the measurement
and the covariance matrix of the Gaussian initial pointer state.
Implementing a high precision the result of two projective
energy measurements is recovered while the use of low

precision leads to broad distributions yet with a finite average.
A spin in a suddenly changing magnetic field serves as an
example in Sec. VI. Section VII concludes the paper.

II. CLASSICALLY EQUIVALENT DEFINITIONS
OF WORK AND THEIR NONEQUIVALENT

QUANTUM COUNTERPARTS

Restricting ourselves to thermally isolated systems we
begin with the discussion of work in classical systems.
When a classical system stays at a phase space point z its
energy is determined by the value of a conveniently chosen
Hamiltonian H (z,λ) [8] which also governs the dynamics of
the system. A change of the parameter λ according to a protocol
� = {λ(t)|0 � t � τ } alters the energy and hence work will
be applied to or taken from the system. We shall adopt the
inclusive definition of work [9] according to which the work
is given by the energy difference at the end and the beginning
of the force protocol:

w = H (Z(τ,z0),λ(τ )) − H (z0,λ(0)) (1)

with Z(t,z0) being the phase space point that evolves from
Z(0,z0) = z0 according to the Hamiltonian dynamics Ż =
{H (Z,λ(t)),Z}P where {,}P denotes the Poisson bracket. As
already mentioned, within the time range [0,τ ] the parameter
λ(t) changes according to a prescribed protocol �. For
classical systems an equivalent definition of work is based
on the fact that the energy difference can be expressed as an
integral of the total time derivative of the Hamiltonian, which
coincides with the respective partial derivative yielding the
work as an integral of the supplied power, i.e.,

w =
∫

dt
∂H [Z(t,z0,λ(t)]

∂λ(t)
λ̇(t), (2)

where λ̇(t) denotes the time derivative of the force parameter
λ(t).

Any adaptation of the two work definitions (1) and (2) to
quantum systems must take into account the back-actions of
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PETER TALKNER AND PETER HÄNGGI PHYSICAL REVIEW E 93, 022131 (2016)

those measurements that have to be performed in order to
determine the work. It is this inherently quantum-mechanical
requirement that renders the two classically equivalent defi-
nitions (1) and (2) inequivalent [4,10]. Based on the energy
difference definition (1) work can be determined by the
two energy measurement approach [4,11,12] which employs
two projective measurements of energy at the end and the
beginning of the force protocol. Due to the projective nature of
these measurements, two energy eigenvalues em(τ ) and en(0)
are obtained. From these eigenvalues the work in a single
realization of the protocol is determined as the difference
w = em(τ ) − en(0). With this definition the statistics of work
complies with the fluctuation relations of Jarzynski [13] and
Crooks [14] for systems initially staying in a canonical initial
state [15].

A quite different picture emerges if one tries to implement
the power based approach [10]. This, in principle, requires
a continuous observation of the system in such a way that
the time evolution of the power can be inferred. Even if
this monitoring is not performed by means of projective
measurements but in a weaker way, a continuous observation
will freeze the dynamics of the system due to the quantum Zeno
effect [10]. For relatively slowly varying protocols one might
try to circumvent the Zeno effect by restricting the observations
to a discrete set of times with a suitably chosen strength of
observation. Yet the resulting statistics of work turn out to
be essentially determined by the number and strength of the
observations and only to a lesser extent by the force protocol.
There are hardly any relations between the statistics obtained
by the two energy measurement and the power approach.
In particular, the fluctuation relations of Crooks [14] and
Jarzynski [13] are only satisfied for the power approach if the
Hamiltonians at all different parameter values commute with
each other [10]. This is not in contradiction with the fact that
measurements during the force protocol leave these fluctuation
relations unchanged as long as the work is determined by two
projective measurements at the beginning and the end of the
force protocol [10,16,17].

We finally note that in various attempts to formulate a
“quantum thermodynamics” [18] work is understood in a way
such that its mean value coincides with the difference of the
mean values of the energies at the end and the beginning
of the force protocol, however, without taking into account
the back-action of the first onto the second measurement.
In order to distinguish this notion of a worklike quantity
from operational definitions that include the back-action of
measurements we call it “untouched work” [19]. In this sense,
work is always untouched in classical mechanics.

The defining property of untouched work hence postulates
that its average ≺ w � can be expressed as

≺ w �= TrU †
�H [λ(τ )]U�ρ(0) − TrH [λ(0)]ρ(0), (3)

where the density matrix ρ(0) describes the initial state and
U� ≡ Uτ,0 denotes the unitary time evolution of the system
over the extension of the force protocol, following as the
solution of the Schrödinger equation

i�∂Ut,s/∂t = H [λ(t)]Ut,s, Us,s = 1, (4)

where 1 denotes the unit operator on the Hilbert space of the
system.

For later use, we introduce the spectral resolution of
the time-dependent Hamiltonian H [λ(t)] in terms of its
eigenvalues en(t) and corresponding projection operators
�n(t) satisfying �n(t)�m(t) = δm,n�m(t), �

†
n(t) = �n(t),

and
∑

n �n(t) = 1. The Hamiltonian can then be represented
as

H [λ(t)] =
∑

n

en(t)�n(t). (5)

We will make frequent use of this representation in the sequel
for the initial and final times t = 0 and τ , respectively.

A way to obtain the average untouched work would be to
prepare two copies of an ensemble representing the initial
state of the system. The first ensemble is then used to
determine its average energy in the standard way by projective
measurements of the initial energy. The ensemble which is
generated by this measurement need not coincide with the
one prior to the measurement and is discarded after the
measurement. The force protocol is applied on the members
of the second ensemble and upon its completion the energy is
measured and its average calculated. The difference of the two
average energies coincides with the average of the untouched
energy. It only agrees with the average work obtained by the
above mentioned two energy measurement approach if the
discarded ensemble was identical with the original one. This
is the case for an initial state that is stationary with respect
to the initial Hamiltonian. The given prescription though is
incomplete in that it only determines an average value but
does not allow one to determine fluctuations in a meaningful
way [20]. Attempts to define the work as an observable in
terms of the difference of the initial and final Hamiltonians in
the Heisenberg picture [21,22] disregard the inherent process
dependence of work [4,23–25]. Also for a canonical initial
state, the Jarzynski [13] and Crooks [14] relations do not hold
with this definition apart from the trivial yet untypical case
of commuting Hamiltonians, [H [λ(t)],H [λ(t ′)]] = 0 for all
0 � t,t ′ � τ .

In a recent effort, Allahverdyan [26] suggested a charac-
terization of untouched work as a fluctuating quantity which
indeed yields Eq. (3) for the average. The statistics of this
hypothetical object is determined in [26] by a probabil-
ity density fuction (pdf)-like function q(w) = ∑

m,n δ[w −
em(τ ) + en(0)]pTMH

m,n . The weight pTMH
m,n is a quasiprobability

for the eigenvalues of the two Hamiltonians H [λ(0)] and
H [λ(τ )] based on the Terletsky-Margenau-Hill distribution
which is given by pTMH

m,n = Trρ(0){U †
��m(τ )U�,�n(0)}/2

with {A,B} = AB + BA denoting the anticommutator of two
operators A and B. The fact that, as a quasiprobability,
the Terletsky-Margenau-Hill distribution assumes negative
values for noncommuting Hamiltonians may also translate to
q(w) which hence is not a probability density function and
consequently fails to characterize a proper random variable.

III. WORK FROM TWO PROJECTIVE
ENERGY MEASUREMENTS

The joint probability p�(m,n) of observing the system at
an eigenvalue en(0) of the Hamiltonian H [λ(0)] by projective

022131-2



ASPECTS OF QUANTUM WORK PHYSICAL REVIEW E 93, 022131 (2016)

measurements at the beginning of the force protocol � and
the eigenvalue em(τ ) of the Hamiltonian H [λ(τ )] at its end is
given by [23,24]

p�(m,n) = Tr�m(τ )U��n(0)ρ(0)�n(0)U †
�, (6)

where the projection operators �n(t), at times t = 0 and τ ,
are defined by the spectral representations of the respective
Hamiltonians [see Eq. (5)]. It is important to note that due to
the first energy measurement the initial density matrix ρ(0)
is projected onto the eigenbasis of the initial Hamiltonian
H [λ(0)]. In other words, all nondiagonal elements of the
initial density matrix in the energy eigenbasis are erased by
the first measurement. This will influence the subsequent time
evolution unless the initial density matrix and Hamiltonian
commute with each other. Moreover, this projection excludes
the use of correlations between energy eigenstates as a
“resource” to extract work out of a system by a unitary process,
as it has been recently suggested [27,28].

The pdf p
pem
� (w) of finding the work w by means of two

projective energy measurements (pem’s) can be expressed in
terms of the joint probability (6) as [23]

p
pem
� (w) =

∑
m,n

δ[w − em(τ ) + en(0)]p�(m,n). (7)

In a realization of the force protocol for which the work
w was obtained the state ρw(τ+), immediately after the
second energy measurement, is proportional to a linear positive
map 	w acting on the initial density matrix ρ(0) with a
proportionality constant inversely proportional to the work
pdf p

pem
� (w). Hence, the postmeasurement state can be written

as

ρw(τ+) = 	w[ρ(0)]
/
p

pem
� (w), (8)

where the so-called operation 	w [29] is given by

	w(ρ) =
∑
m,n

δ[w − em(τ ) + en(0)]

×�m(τ )U��n(0)ρ�n(0)U †
��m(τ ). (9)

If the energies are measured but the work is not registered the
system is found in the so-called nonselective postmeasurement
state ρ(τ+), given by

ρ(τ+) =
∫

dwρw(τ+)ppem
� (w) =

∫
dw 	w[ρ(0)] (10)

leading with Eq. (9) to

ρ(τ+) =
∑
m,n

�m(τ )U��n(0)ρ(0)�n(0)U †
��m(τ ). (11)

This expression immediately follows by a twofold application
of the Lüders-von-Neumann rule [30,31]. With the require-
ment of a normalized selective postmeasurement state (8), the
work pdf results from the operation acting on the initial system
density matrix as

p
pem
� (w) = Tr	w[ρ(0)]. (12)

Hence, the operation 	w can be considered as a complete
characterization of the work measurement. It is a linear map
on Hilbert space operators with finite trace that preserves the
positivity; i.e., ρ � 0 implies 	w(ρ) � 0 and is contractive,

i.e., Tr	w(ρ) � Trρ for all ρ � 0. Also more general mea-
surement strategies than the projective one are characterized by
operations with these mathematical properties of being linear,
positivity preserving, and contractive maps on the space of
linear Hilbert space operators with finite trace.

Coming back to projective measurements we finally want
to note the Crooks relation [12,14,32,33]. It connects the pdf’s
p�(w) and p�̄(w) for a protocol � = {λ(t)|0 � t � τ } and
the time-reversed protocol �̄ = {λ(τ − t)|0 � t � τ } [34]:

p
pem
� (w) = e−β(�F−w)p

pem
�̄

(−w). (13)

This requires that the initial density matrices of the forward
and the backward processes must have Boltzmann weights as
diagonal elements in the energy eigenbasis, i.e., Tr�n(t)ρ(t) =
e−βen(t)dn(t)Z−1(t), where dn(t) = Tr�n(t) is the degeneracy
of the energy en(t) and Z(t) = ∑

n e−βen(t)dn(t) is the partition
function for t = 0 and τ .

The free energy difference �F is defined in terms of the
partition functions of the initial states of the forward and the
backward processes, e−β�F = Z(τ )/Z(0). We note that, most
often, canonical density matrices are considered as initial states
of the forward and backward processes. We point out, however
that for the Crooks relation to hold, only the diagonal elements
of these density matrices need to have the form of Boltzmann
factors whereas the nondiagonal elements may be arbitrary, as
long as the density matrix is positive.

IV. WORK FROM TWO GAUSSIAN
ENERGY MEASUREMENTS

Instead of the projective energy measurements one may
employ generalized measurements of energy for determining
work. As demonstrated by Venkatesh et al. [35] work dis-
tributions obtained by means of generalized measurements
typically do not satisfy fluctuation relations. However, for a
whole class of generalized energy measurements, in particular
for Gaussian measurements, modified fluctuation theorems
exist for which the modifications are solely determined by
the properties of the measurement apparatus and hence are
independent of the force protocol [36]. We here choose a less
formal approach compared to [36] by adapting von Neumann’s
model [31] to energy measurements.

A. Gaussian energy measurement

In von Neumann’s model a measurement apparatus, here
called the “pointer,” is coupled to the system during a short
time τp. Within this time the value of the observable to be
measured is transcribed onto the scale of the pointer while
ideally τp is small enough that the unitary dynamics of the
system is negligible [37]. The information transfer is formally
achieved by a unitary operator Vt = e−iκH [λ(t)]P/� which when
acting on the state of the pointer shifts the pointer position
by an amount proportional to the H [λ(t)]. Here, P is the
momentum operator which is canonically conjugate to the
position X = ∫

dx xQx of the pointer where Qx = |x〉〈x| is
the projection operator on the eigenstate |x〉 with eigenvalue x.
The unitary operator Vt describes the time evolution of system
and pointer governed within the time span τp by the interaction
Hamiltonian HSP (t) = −gH [λ(t)]P where g describes the
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coupling strength. The effective interaction strength κ between
system and pointer therefore is given by κ = gτp. System and
pointer are supposed to be uncorrelated before the interaction
has taken place. Then the total density matrix is given by the
direct product ρ ⊗ σ of the system density matrix ρ and the
pointer density matrix σ immediately before the interaction.
The system pointer interaction is followed by a projective
measurement of the pointer position x. The state of the system
immediately after the measurement can be expressed as

ρx = φ(t)
x (ρ)/p(1)(x), (14)

where the operation φ(t)
x is composed of the interaction and the

projective measurement, yielding

φ(t)
x (ρ) = TrPQxVtρ ⊗ σV

†
t

=
∑
n,n′

σ
(
x − κen(t),x − κen′(t)

)
�n(t)ρ�(t)n′ . (15)

Here, TrP denotes the trace over the Hilbert space of the
pointer, σ (x,y) = 〈x|σ |y〉 is the density matrix of the pointer
in the position representation, and p(1)(x) gives the probability
of observing the pointer in the eigenstate |x〉. It is determined
by the normalization of the postmeasurement state ρx and
therefore becomes

p(1)(x) = Trφ(t)
x (ρ) =

∑
n

σ (x−κen(t),x−κen(t))Tr�n(t)ρ.

(16)

We now assume that the initial state of the pointer is given
by a Gaussian density matrix with vanishing averages of
position and momentum, i.e., 〈X〉 = 0 and 〈P 〉 = 0. The
density matrix σ is then uniquely determined by the second
moments 〈X2〉, 〈XP 〉, and 〈P 2〉. Note that the positivity
of the density matrix is equivalently expressed by the
inequality 〈X2〉〈P 2〉 � |〈XP 〉|2 = (�2 + 〈{X,P }〉2)/4 where
{X,P } = XP + PX denotes the anticommutator. In position
representation a Gaussian density matrix is given by [38]

σ (x,y) = 1√
2π〈X2〉

e−μ(x,y), (17)

where μ(x,y) is a quadratic form in the position variables x

and y defined as

μ(x,y) = 1

2�2〈X2〉 {〈P
2〉〈X2〉(x − y)2

− [〈XP 〉x − 〈PX〉y]2}

= 〈P 2〉
2�2

[x − y]2 + 1

2〈X2〉

×
[

1

2
(x + y) − i

〈{X,P }〉
2�

(x − y)

]2

. (18)

Due to the vanishing average pointer position, 〈X〉 = 0, the
pointer position x presents an unbiased estimate of the system
energy having the value E = x/κ . Hence, the pdf p(E) =
κp(1)(κE) to find the system at energy E is given by

p(E) =
∑

n

1

2πσ 2
e

e
− 1

2σ2
e

[E−en(t)]2

Tr�n(t)ρ, (19)

where σ 2
e is defined by

σ 2
e = 〈X2〉

κ2
. (20)

For a state with sharp energy ek , i.e., �k(t)ρ = ρ, one obtains
from Eq. (19) with Tr�n(t)ρ = δn,k the conditional probability

p(E|k) = 1

2πσ 2
e

e−[E−ek (t)]2/(2σ 2
e ). (21)

Hence, σ 2
e specifies the inaccuracy of the energy measurement.

Even though the energy pdf (19) agrees with the one
obtained in [36] the operation 	

(t)
E = κφ

(t)
κE characterizing

the measurement generally differs from the form assumed
in [36]. The latter is defined as 	

M(t)
E (ρ) = ME(t)ρM

†
E(t)

in terms of a single Gaussian Kraus operator ME(t) =
(2πσ 2

e )−1/4e−{E−H [λ(t)]}2/(4σ 2
e ). One obtains this particular form

from Eq. (15) only if the initial pointer density matrix
corresponds to a pure Gaussian state in position representation,
given by

σ (x,y) = ψGauss(x)ψGauss(y), (22)

where

ψGauss(x) = (2π〈X2〉)−1/4e−x2/(4〈X2〉). (23)

In this case 〈X2〉〈P 2〉 = �
2/4 and consequently 〈{X,P }〉 = 0

holds.
For a general Gaussian initial state specified by Eqs. (17)

and (18) the operation 	
(t)
E becomes

	
(t)
E (ρ)= 1√

2πσ 2
e

∑
n,n′

e
− 1

2σ2
nd

[en(t)−en′ (t)]2

× e
− 1

2σ2
e
[E− 1

2 [en(t)+en′ (t)]+i
〈{X,P }〉

2�
[en(t)−en′ ]]2

×�n(t)ρ�n′(t), (24)

where

σ 2
nd = �

2

κ2〈P 2〉 (25)

controls the contribution of nondiagonal elements on the
postmeasurement state. For comparison, the operation 	

M(t)
E

as defined above in terms of a single Gaussian Kraus operator
ME(t) becomes

	
M(t)
E (ρ) = 1√

2πσ 2
e

∑
n,n′

e
− 1

8σ2
e

[en(t)−en′ (t)]2

× e
− 1

2σ2
e

{E−[en(t)+en′ (t)]/2}
�n(t)ρ�n′(t). (26)

The subsequent action of 	
(0)
E followed by the unitary time

evolution U� and the final operation 	
(τ )
E′ results in an operation

characterizing the joint occurrence of the energies E and E′ at
the beginning and the end of the force protocol. It is used in the
following subsection for characterizing a work measurement
composed of two Gaussian energy measurements.

B. Work distribution

The occurrence of energies E and E′ by two Gaussian
measurements separated by the time span of the unitary time
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evolution under the force protocol is characterized by the
composed operation 	E′,E which acts on a system density
matrix ρ as

	E′,E(ρ) = 	
(τ )
E′

[
U�	

(0)
E (ρ)U †]. (27)

Considering only the resulting work w = E′ − E one in-
troduces the according operation 	(2)

w ≡ ∫
dE 	E+w,E [39]

which becomes

	(2)
w (ρ) = 1√

4πσ 2
e

∑
m,m′,n,n′

e
− 1

2σ2
nd

[[em(τ )−em′ (τ )]2+[en(0)−en′ (0)]
2]

× e
− 1

4σ2
e

[w−(wm,n+wm′ ,n′ )/2+i
〈{X,P }〉

2�
(wm,n−wm′n′ )]2

×�m(τ )Uλ�n(0)ρ�n′(0)U †
��m′ (τ ), (28)

where wm,n = em(τ ) − en(0) would be a possible work value
if the energies were measured projectively. The nonselective
postmeasurements state ρ(2)(τ+) is given by the integral of
	(2)

w (ρ) over w according to Eq. (10) yielding

ρ(2)(τ+) =
∑

m,m′,n,n′
e
− 1

2σ2
nd

[[em(τ )−em′ (τ )]2+[en(0)−en′ (0)]
2]

×�m(τ )Uλ�n(0)ρ�n′ (0)U †
��m′(τ ). (29)

The pdf p(2)(w) to find the work w with two Gaussian energy
measurements is given by the trace of Eq. (28) giving

p
(2)
� (w) = Tr	w[ρ(0)] = 1√

4πσ 2
e

∑
m,n,n′

e
− 1

2σ2
nd

[en(0)−en′ (0)]2

× e
− 1

4σ2
e
[w−em(τ )+ 1

2 [en(0)+en′ (0)]−i
〈{X,P }〉

2�
[en(0)−en′ (0)]]2

×p�(m,n,n′), (30)

where

p�(m,n,n′) = Tr�m(τ )U��n(0)ρ(0)�n′ (0)U †
�. (31)

Note that the diagonal elements of p�(m,n,n′) with n = n′
coincide with the joint probability p�(m,n) obtained by two
projective energy measurements [see Eq. (6)]. In analogy
to Eq. (8) the selective postmeasurement state is given by
ρ(2)

w (τ+) = 	(2)
w [ρ(0)]/p(2)

� (w). A detailed discussion of the
results (28)–(30) is presented in the context of the similar
expressions for the work meter discussed next.

V. A WORK METER

Based on a recent idea put forward by Roncaglia, Cerisola,
and Paz [6], recently, de Chiara, Roncaglia, and Paz [7]
suggested a method to determine work by means of a single
generalized measurement. For the sake of completeness we
describe the principle of operation of such a work meter
following Ref. [7] and discuss its functioning in comparison
with two Gaussian energy measurements. Based thereon, the
limiting cases of the most accurate and maximally imprecise
measurements are investigated as well.

A. Remindful pointer

The work meter consists of an auxiliary system with a
pointer. This pointer interacts twice with the system. The first

interaction takes place immediately before the force protocol
sets in. It leads to a shift of the pointer proportional to
the momentary energy of the system. As for a generalized
energy measurement described above the interaction is given

by a unitary transformation V
†

0 = eiκH[λ(0)]P/� transferring the
negative value of the system energy to the pointer. After the
first interaction has ended the position of the pointer is not
read out but rather left unchanged until the force protocol has
ended. Then, a second interaction between system and pointer
moves the pointer by an amount that is proportional to the final
energy. Accordingly, the interaction is described by the unitary

operator Vτ = e−iκH[λ(τ )]P/�. Only after the completion of
this interaction, the pointer position is measured projectively.
The whole process consisting of the two unitary pointer
system interactions interrupted by the unitary system evolution
under the force protocol and the final position measurement
can be expressed by a total operation φx characterizing the
non-normalized postmeasurement state of the system:

φx[ρ(0)] = TrPQxVτU�V
†

0 ρ(0) ⊗ σV0U
†
�V †

τ

=
∑

m,m′,n,n′
σ (x − κwm,n,x − κwm′,n′ )

×�m(τ )U��n(0)ρ(0)�n′ (0)U †
��m′ (τ ). (32)

As for the generalized energy measurement, σ denotes the
density matrix of the pointer before the first interaction has
taken place. Using for σ the same Gaussian form of Eqs. (17)
and (18) together with the pointer calibration x = κw, the
respective operation becomes

	w(ρ(0)) = 1√
2πσ 2

e

∑
m,m′,n,n′

e
− 1

2σ2
nd

(wm,n−wm′ ,n′ )2

× e
− 1

2σ2
e

[w− 1
2 (wm,n+wm′ ,n′ )+i

〈{X,P }〉
2�

(wm,n−wm′ ,n′ )]2

×�m(τ )U��n(0)ρ(0)�n′ (0)U †
��m′(τ ). (33)

This expression is similar in its structure to the operation (28)
but contains two differences. As a first difference one notices
the way that the nondiagonal terms with n 	= n′ or m 	= m′
are suppressed by the first exponential terms in the sums on
the right-hand sides of Eqs. (28) and (33). The exponent is
proportional to [em(τ ) − em′ (τ )]2 + [en(0) − en′ (0)]2 for two
energy measurements and (wm,n − wm′,n′ )2 for the work meter.
The second difference stems from the fact that, in the two
measurement approach, each energy measurement contributes
to the variance of the work and therefore the width of the
second exponential factor is half as large for the work meter.

The nonselective postmeasurement state ρwm(τ+) imposed
by the work meter (wm) is given by

ρwm(τ+) =
∑

m,m′,n,n′
e
− 1

2σ2
nd

(wm,n−wm′ ,n′ )2

×�m(τ )U��n(0)ρ(0)�n′ (0)U †
��m′(τ ). (34)

It also differs by the weights of the nondiagonal terms from
ρ(2)(τ+) [cf. Eq. (29)]. The work pdf pwm

� (w) = Tr	w[ρ(0)]
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becomes

pwm
� (w) =

∑
m,n,n′

1√
2πσ 2

e

e
− 1

2σ2
nd

[en(0)−en′ (0)]2

× e
− 1

2σ2
e

[w−em(τ )+ 1
2 [en(0)+en′ (0)]−i

〈{X,P }〉
2�

[en(0)−en′ (0)]]
2

×p�(m,n,n′). (35)

Due to the trace the nondiagonal terms m 	= m′, which add to
the operation 	w, do not enter the work pdf. Those nondiag-
onal terms with n 	= n′ contribute with the same exponential
weight as for the work pdf resulting from the Gaussian two
energy measurement approach. These terms vanish only for an
initially stationary state, i.e., if [H [λ(0)],ρ(0)] = 0. Then all
nondiagonal elements p�(m,n,n′) with n 	= n′ vanish and the
work probability reduces to the following expression:

pd
�(w) =

∑
m,n

1√
2πσ 2

e

e
− 1

2σ2
e

[w−em(τ )+en(0)]2

pλ(m,n,n). (36)

Here, the superscript d stands for “diagonal,” indicating the
restriction to initial density matrices that commute with the
initial Hamiltonian and hence are diagonal in the respective
eigenbasis. Because, as already mentioned, the diagonal
elements p(m,n,n) agree with the joint probabilities (6), which
determine the work pdf (7) for the two projective energy
measurement scheme, the work pdf (36) becomes a smeared
variant of the discrete work distribution obtained by projective
energy measurements. The amount of broadening is uniformly
determined by the variance σ 2

e = 〈X2〉/κ2 [see Eq. (20)]. The
work probability (36) can now be expressed as the convolution
of the projective work pdf and a Gaussian which is solely
determined by the properties of the pointer yielding

pd
�(w) =

∫
dw′√
2πσ 2

e

e−(w−w′)2/(2σ 2
e )p

pem
� (w′). (37)

The pointer properties only enter this expression in the
combination of σ 2

e ; in particular, the work pdf does not
depend on the pointer momentum variance 〈P 2〉 nor on the
symmetrized pointer position momentum cross-correlation
〈{P,X}〉. It is also worth noticing that the Gaussian factor
in the convolution is independent of the force protocol.

For a canonical initial state ρ(0) = Z−1e−βH(0) the follow-
ing modified Crooks relation exists [36]:

pd
�

(
w − 1

2σ 2
e β

) = e−β(�F−w)pd
�̄

(−w − 1
2σ 2

e β
)
, (38)

where pd
�̄

(w) denotes the work pdf for the time-reversed
protocol. As in the original Crooks relation (13), the free
energy difference �F refers to the two initial equilibrium
states of the backward and the forward processes. From
the modified Crooks relation one immediately obtains the
modified Jarzynski equality [36]:

〈e−βw〉d = e−β�F e
1
2 β2σ 2

e . (39)

The correction factor solely depends on the pointer variance,
but is independent of the force protocol.

For a pure Gaussian position state of the pointer (pGp),
specified by Eqs. (22) and (23), the work pdf (35) simplifies

to read

p
pGp
� (w) =

∑
m,n,n′

1√
2πσ 2

e

e
− 1

8σ2
e

[en(0)−en′ (0)]2

× e
− 1

2σ2
e

[w−em(τ )+ 1
2 [en(0)+en′ (0)]]2

p�(m,n,n′). (40)

In Sec. VI this expression will be illustrated with an example.

B. Accurate measurements

In the limit of large values of the pointer-system coupling
strength κ , both variances σ 2

nd = �
2/(κ2〈P 2〉) and σ 2

e =
〈X2〉/κ2 defined in Eqs. (20) and (25), respectively, become
arbitrarily small. This suppresses all nondiagonal contributions
from terms with n 	= n′ and further renders the range of
deviating work values about each discrete energy difference
em(τ ) − en(0) very narrow. In the limit κ → ∞ the work
pdf of the work meter approaches the two-projective energy
measurement result (7), i.e.,

pwm
� (w)

κ→∞−−−→ p
pem
� (w). (41)

In order to sufficiently suppress all nondiagonal contributions
to the sum in Eq. (35), the variance σ 2

nd needs to be substantially
smaller than the smallest squared eigenenergy difference of the
initial Hamiltonian H [λ(0)], i.e.,

2σ 2
nd � min

n,n′
n	=n′

[en(0) − en′ (0)]2. (42)

Once the nondiagonal elements are sufficiently suppressed the
variance σ 2

e must be chosen smaller than the minimum work
difference in order to achieve their unambiguous resolution.
Hence, the following inequality must be satisfied:

2σ 2
e � min

m,n,m′,n′
m	=m′ or n	=n′

[em(τ ) − en(0) − em′ (τ ) + en′ (0)]2. (43)

Additionally, as mentioned above, the inequality (1 +
〈{X,P }〉2/�

2)σ 2
nd � 4σ 2

e must be fulfilled. An illustrative
example is presented in Sec. VI.

C. Imprecise measurements

The opposite limit of maximally imprecise measurements is
reached for a vanishingly small measurement strength κ . One
expects that in this limit the back-action of the measurement
apparatus on the system will be strongly suppressed, however
most likely at the cost of a large measurement error. Before
confirming this qualitative picture on the basis of the work
pdf (35) we first consider the mean value of the work
〈w〉 = ∫

dw w p�(w) in this particular limit. Using Eq. (35)
we obtain for the average work

〈w〉 =
∑
m

n,n′

e
− 1

2σ2
nd

(en(0)−en′ (0))2
[
em(τ ) − 1

2
[en(0) + en′ (0)]

+ i
〈{X,P }〉

2�
[en(0) − en′ (0)]

]
p�(m,n,n′). (44)

Using Eq. (31) one can further simplify this average by
performing the sum on m and splitting the remaining sum
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into its diagonal and nondiagonal contributions leading to

〈w〉 = TrH [λ(τ )]ρ̄(0) − TrH [λ(0)]ρ(0)

+
∑
n>n′

e
− 1

2σ2
nd

[en(0)−en′ (0)]2

TrH [λ(τ )]U�[�n(0)ρ(0)�n′(0)

+�n′ (0)ρ(0)�n(0)]U †
�, (45)

where

ρ̄(0) =
∑

n

�n(0)ρ(0)�n(0) (46)

denotes the projection of the initial density matrix onto the
eigenbasis of the initial Hamiltonian H [λ(0)]. The expression
(45) for the average work is still exact. The first two terms on
the right-hand side coincide with the average work obtained
from two projective energy measurements; the sum contains
contributions from nondiagonal elements of the initial density
matrix. Note that the imaginary term on the right-hand side
of Eq. (44), which is caused by a finite symmetrized pointer
position momentum correlation, does not contribute to the
average.

In the imprecise limit κ → 0 the exponential term under
the sum on the right-hand side approaches unity. Then, the
sums in Eq. (45) can be performed to yield the work as
the difference of the energy expectation values at the end and
the beginning of the force protocol, leading to

〈w〉 = TrSH [λ(τ )]U�ρ(0)U †
� − TrSH [λ(0)]ρ(0). (47)

As expected, this result does not contain any back-action of the
first energy measurement and coincides with the untouched
work average (3). Hence, one might be tempted to expect
that the imprecise limit could provide a physical access to
untouched work.

In order to study this limit in more detail, we consider the
characteristic function of work [4], which is defined as the
Fourier transform of the work pdf. Hence it becomes

G�(u) =
∫

dweiuwp�(w)

=
∑
m

n,n′

p�(m,n,n′)χm,n,n′ (u), (48)

where χm,n,n′ (u) is determined by the Fourier transformed
pointer density matrix

χm,n,n′ (u) =
∫

dxeiux/κσ (x − κwm,n,x − κwm,n′)

= e
− 1

2σ2
nd

[en(0)−en′ (0)]2

e− 1
2 σ 2

e u2
eiucm,n,n′ (49)

with

cm,n,n′ = em(τ ) − αen(0) − α∗en′ (0) (50)

and

α = 1

2

(
1 − i

�
〈{X,P }〉

)
. (51)

The expression (48) with Eqs. (49) and (50) is still exact. It
can be further evaluated in the imprecise limit in which the
first, u-independent exponential factor on the right-hand side

of Eq. (49) can be replaced by unity. The triple sum in Eq. (48)
can then be performed to yield the characteristic function in
the imprecise limit (il), Gil

�(u), reading

Gil
�(u) = e− 1

2 σ 2
e u2

g�(u), (52)

where

g�(u) = TreiuHH [λ(τ )]e−iαuH [λ(0)]ρ(0)e−iuα∗H [λ(0)]. (53)

Further, HH [λ(τ )] ≡ U
†
�H [λ(τ )]U� denotes the final Hamil-

tonian in the Heisenberg picture. The respective work pdf
pil(w) results as a sum of wide Gaussians, i.e.,

pil
�(w)=

∑
m

n,n′

1√
2πσ 2

e

e
− 1

2σ2
e

[w−em(τ )+αen(0)+α∗en′ (0)]2

p�(m,n,n′).

(54)

Provided the inverse Fourier transform of g�(u) exists the work
pdf can also be expressed as a convolution with a Gaussian of
width σe, i.e.,

pil
�(w) =

∫
dw′√
2πσ 2

e

e
− 1

2σ2
e

(w−w′)2

q�(w′), (55)

where

q�(w) =
∫

du

2π
e−iuwg�(u) (56)

is the inverse Fourier transform of g�(w).
Before we further discuss the condition of existence and

the properties of q�(w) we note that the result given in the first
line of Eq. (54) can also be directly obtained from the work
pdf (35) by replacing the first exponential on the right-hand
side of Eq. (35) by unity. In this way all nondiagonal elements
contribute equally.

The expression (53) coincides with the characteristic func-
tion of work obtained by two projective energy measurements
[4] only if the initial density matrix ρ(0) commutes with
the Hamiltonian H [λ(0)] at the beginning of the proto-
col. Then the two exponents containing H [λ(0)] can be
combined into a single term such that g�(u) = Gpem(u) ≡
TreiuHH [λ(τ )]e−iuH [λ(0)]ρ(0) and q�(w) = p

pem
� (w) hold. In

general, though, the inverse Fourier transform of g�(u) leads
to a divergent result due to the presence of the imaginary part
of the coefficient α. Only if the symmetrized pointer position
momentum cross-correlation vanishes, 〈{X,P }〉 = 0, α is real
and q�(w) becomes a sum of the projective work pdf p

pem
� (w)

and further delta contributions at work values that correspond
to the differences em(τ ) − [en(0) + en′ (0)]/2 between the final
energy eigenvalues and the arithmetic averages of all pairs
of initial eigenvalues. Hence, for 〈{X,P }〉 = 0, the inverse
Fourier transform of the trace expression becomes

q�(w) = p
pem
� (w)

+
∑

m,n,n′
n	=n′

δ

(
w−em(τ )+ 1

2
[en(0)+en′ (0)]

)
p�(m,n,n′).

(57)

The integral of q�(w) over all possible work values is unity as
follows from Eq. (54) with

∫
dwq�(w) = g�(0) = 1. Because
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the projective work pdf p
pem
� (w) itself is normalized the

integral over the sum expression on the right-hand side must
vanish. This implies that either this sum vanishes for all values
of w or that it assumes both positive and negative values. The
first case happens only if p�(m,n,n′) = 0 for all n 	= n′. One
can show that for this to hold the initial density matrix must
be stationary, i.e., [H [λ(0)],ρ(0)] = 0. We conclude that in all
other cases q�(w) assumes both positive and negative values
and therefore does not qualify as a proper pdf. The positivity of
pil

�(w) is only guaranteed by the convolution with a sufficiently
broad Gaussian which smooths out any negative contributions.

In agreement with the expectation formulated in the
beginning of this subsection the nonselective postmeasurement
state (34) converges to the state that is reached solely by the
force protocol without the inference of the work meter; i.e.,
one obtains

ρwm(τ+)
κ→0−−→ U�ρ(0)U †

�. (58)

Provided q�(w) exists, the convolution in the second line of
Eq. (54) can be evaluated in the limit σe → ∞ yielding

pil
�(w) ≈ 1

2πσ 2
e

e
− 1

2σ2
e

(w−≺w�)2

. (59)

We conclude that the imprecise limit suppresses any influence
of the interactions of the work measurement device and in this
sense yields the untouched work but on the other hand does
not carry any system-specific information on the work beyond
its average.

Finally, we note that the limiting form (54) presents a valid
approximation of the work pdf (35) if

2σ 2
nd � (en∗ − eN )2, (60)

where both n∗ and N are elements of the set Nε that
exhaust the total probability obtained from the diagonal
elements pn = Tr�n(0)ρ(0) up to a negligibly small fraction
ε, such that

∑
n∈Nε

pn = 1 − ε. Here, en∗ = minn∈Nε
en(0) and

eN = maxn∈Nε
en(0) are the minimum and maximum energies,

respectively, out of this set of states contributing to the energy
distribution in the initial state. The criterion (60) is obtained
from the fact that the nondiagonal elements of p�(m,n,n′)
are proportional to ρn,n′ = 〈n; 0|ρ(0)|n′; 0〉 [cf. Eq. (31)] [40].
Due to the positivity of the density matrix ρ(0), the absolute
values of these nondiagonal elements of the density matrix are
dominated by the diagonal elements as |ρn,n′ |2 � pnpn′ .

VI. WORK DISTRIBUTIONS OF A QUENCHED
TWO LEVEL SYSTEM

As a simple example we consider a spin 1/2 which
undergoes a sudden change of the Hamiltonian from its initial
form

Hi = εi

2
σz (61)

to the final form

Hf = εf

2
σx, (62)

where σx and σz are Pauli-spin matrices. The central quantity
p�(m,n,n) can then be expressed in terms of the eigenfunc-

(a)

(b)

0

0.5

1

−2 0 2

p
p
G

p
Λ

(w
/ε

i)
ε i

0

0.25

0.5

−2 0 2

p
p
G

p
Λ

(w
/ε

i)
ε i

w/εi

FIG. 1. The pdf of work supplied on a two-level system by a
sudden change of the Hamiltonian from Hi to Hf given by Eqs. (61)
and (62), respectively, is displayed as it is generated by a work
meter with a pure Gaussian state in position representation. The level
separation of the Hamiltonian after the switch is given by εf = 2εi .
Both panels refer to an initial density matrix (64) with ground-state
probability p = 0.7. In panel (a) the work pdf is displayed for
vanishing nondiagonal elements of the initial density (q = 0) and
different values of the work variance σ 2

e which are σ 2
e = 0.01 × ε2

i

(red), 0.1 × ε2
i (blue), and ε2

i (black). At the smallest variance, the
work pdf consists of clearly separated peaks, which overlap at the
intermediate variance and are completely washed out at the large
variance. In those cases where peaks can be identified they are always
exactly located at the positions of the work values (67) obtained by
projective measurements. These values are indicated by the four thin
vertical black lines. Panel (b) exemplifies the effect of a nondiagonal
initial density matrix at the intermediate variance σ 2

e = 0.1 × ε2
i . As

a reference, the solid blue line refers to the diagonal case (q = 0)
whereas the red dashed curve corresponds to q = √

0.21 and the
black dash-dotted line corresponds to q = −√

0.21. The nondiagonal
elements of the initial density matrix ρ(0) lead to a substantial
distortion of the work pdf. In particular, the positions of the maxima
do no longer coincide with those of the projective work values.

tions |n; i〉 and |n; f 〉 of Hi and Hf , respectively, as

p�(m,n,n′) = 〈m; f |n; i〉〈n; i|ρ(0)|n′,i〉〈n′,i|m; f 〉. (63)

The indices m,n,n′ taking the values 1 and 2 refer to the ground
and the exited state, respectively, of each Hamiltonian. The
scalar products are readily determined to yield 〈1,i|1,f 〉 =
−〈2,i|1,f 〉 = 〈1,i|2,f 〉 = 〈2,i|2,f 〉 = 1/

√
2.

We specify the density matrix ρ(0) in the basis of Hi as

ρ(0) =
(

p q

q∗ 1 − p

)
(64)

with 0 � p � 1 and p(1 − p) � |q2|.
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−0.5

0

0.5

1

0 1 2 3 4

〈w
〉/

ε i

σ2
e/ε2i

FIG. 2. The average work approaches asymptotically the differ-
ence of untouched energy mean values ≺w� (3) as a function of the
variance σ 2

e [see Eq. (44)]. All curves are for a density matrix of the
type (64) with p = 0.7. The average work is displayed for q = √

0.21
by the upper red curve, for q = 0.5 × √

0.21, 0, −0.5 × √
0.21, and

−√
0.21 by the blue, green, and lower red curves, respectively. The

according asymptotic values given by Eq. (44) are indicated by thin
horizontal lines of respective color. The final energy is chosen as
εf = 2 × εi . The change in the average work is largest for the two
limiting values q = ±√

p(1 − p) = ±√
0.21 and vanishes for q = 0.

Choosing for the initial pointer state σ a pure Gaussian state
as defined in Eqs. (22) and (23), we obtain

p
pGp
� (w) = p

diag
� (w) + q + q∗

2
√

2πσ 2
e

e
− ε2

i

8σ2
e

× [
e
− 1

2σ2
e

(w−εf /2)2

− e
− 1

2σ2
e

(w+εf /2)2]
, (65)

where the diagonal elements of the initial density matrix
contribute with

p
diag
� (w) = 1√

2πσ 2
e

{[
e
− 1

2σ2
e

(w−w1,1)2

+ e
− 1

2σ2
e

(w−w2,1)2]
p

+ [
e
− 1

2σ2
e

(w−w1,2)2

+ e
− 1

2σ2
e

(w−w2,2)2]
(1−p)

}
. (66)

The allowed projective work values wm,n are given by

w1,1 = −εf /2 + εi/2, w2,1 = εf /2 + εi/2,

w1,2 = −εf /2 − εi/2, w2,2 = εf /2 − εi/2.
(67)

Figure 1 displays the work pdf (65) for different variances σ 2
e

and different initial system density matrices. While an increase
of σ 2

e leads, as expected, to a broadening of the peaks, the
presence of nondiagonal terms q 	= 0 in the system’s density
matrix gives rise to further deformations and, in particular, also
to shifts of these peaks. Figure 2 demonstrates the transition
of the average work from the accurate limit yielding the
results of projective energy measurements to the limit of
maximally imprecise measurements for different values of the
nondiagonal elements of the initial system’s density matrix.
In the latter limit the approach to the average untouched work
(3) is confirmed. Finally, in Fig. 3 the asymptotic work pdf
(54) is compared with the full result (65) for two different
values of the variance σ 2

e . For the smaller one, a negative
contribution resulting from negative parts of q�(w) is visible
whereas for the larger one the Gaussian factor in Eq. (54) is
sufficiently broad to suppress any negative part. As a result,
the limiting distribution coincides fairly well with the exact

0

0.2

0.4

−2.5 0 2.5 5

p
p
G

p
Λ

(w
/ε

i)
ε i

w/εi

FIG. 3. The exact work pdf for σ 2
e = ε2

i (narrow blue curve) and
σ 2

i = 2 × ε2
i (broad blue curve) is compared to the limiting result

of the imprecise measurement limit for two values of the variance
σ 2

e (thin red curves). At the smaller value σ 2
w = ε2

i the Gaussian
factor of the convolution integral on the right-hand side of Eq. (54) is
not yet broad enough to suppress the negative contributions around
w = −2 × εi . At the larger variance, the approximate work pdf only
insignificantly differs from the exact one. The other parameters,
p = 0.7 and q = √

0.21, are the same for all curves.

one, even though with 2σ 2
nd = 16ε2

i and (en∗ − eN )2 = 8ε2
i the

inequality (60) is only marginally satisfied.

VII. CONCLUSIONS

We reviewed several attempts to specify work. In particular,
we considered three different setups for which we compared
the state of the considered system immediately after the com-
pletion of selective and nonselective measurements of work
as well as the respective probabilities of finding a particular
value of work. In the first scenario, work is determined in the
standard way by two projective measurements of energy; in the
second scenario, also two energy measurements are performed
in each of which the system is coupled to a Gaussian pointer
state and read out by projective measurements of the pointer
state; in the third scenario, proposed by de Chiara, Roncaglia,
and Paz in [7], the result of the first pointer-system interaction
encoding the negative initial energy is stored in the pointer until
the force protocol is completed. The final energy is transferred
to the same pointer and added to the stored value. Only then
the pointer state is read out by a projective measurement.

In all three cases the operations characterizing the selective
as well as the nonselective postmeasurement states and
the distributions of work values are different. While the
projective energy measurements select the elements of the
according density matrix that are diagonal with respect to
the measured Hamiltonians, nondiagonal elements contribute
to the postmeasurements states generated by both Gaussian
strategies, however with different weights. Moreover, when
considering the work pdfs one finds broadened peaks instead of
the sharp lines in the case of projective energy measurements.
The widths of these peaks are governed by an effective
measurement strength, σ 2

e = 〈X2〉/κ2, which is determined
by the variance of the pointer position 〈X2〉, in its initial
state and a parameter κ = gτp combining the strength g and
duration τ of the interaction between system and pointer. A
second variancelike quantity σ 2

nd = �
2/(〈P 2〉κ) governs the
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influence of nondiagonal terms of the initial system density
matrix. These terms not only add to the broadening but also
cause shifts of the peaks of the work pdf relative to the possible
work values obtained by projective energy measurements. The
two variances are restricted by an inequality which suppresses
the influence of nondiagonal elements of the initial density
matrix if the broadening of the lines is small. On the other
hand it entails huge broadening if the nondiagonal elements
are only a little suppressed. The disjoint parameter regimes
of small σe and large σnd correspond to the limiting cases
of accurate and imprecise measurements. In the accurate limit
the work statistics based on projective energy measurements is
approached, whereas in the imprecise limit the work statistics
is governed by an extremely broad Gaussian distribution
with an average of the untouched work ≺ w � and width
σe � |≺ w �|. In this limit, the fluctuations are completely
determined by the imprecision of the measurement device.

Therefore this limit is of minor practical use; to achieve a
reliable estimate of the average untouched work an extremely
large number of realizations would be required.

Finally, we note that the fluctuation relations of Jarzynski
[13] and Crooks [14] remain valid in their modified form only if
the system initially stays in a canonical state. This is in contrast
to the projective measurement approach. There it is sufficient
if only the diagonal elements in the initial energy basis are
given by Boltzmann factors, while additional non-vanishing
off-diagonal elements are still allowed.
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